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" Introduction

Synoptic validation of the SWOT error spectrum is a hot topic

Classical along-track 1D spectral analysis will measure the PSD of
the sum of ocean signals plus all errors (not individual
components)

Measuring individual components is essential for Cal/Val and
many applications (e.g. assimilation)

Can we extract each spectrum from SWOT

images with the sum of SSH + all errors ?

In this study we use the 2D properties of KaRIN images and the
cross-track geometry of measurement errors to measure each
component separately
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Experimental setup with the SWOT Ocean simulator: dataset

* 60-day worth of fast sampling

1-day difference
(fast-sampling orbit)

phase simulation (MITgcm run) 'y
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* 1-day differences cancel out a et e i s e

large fraction of the SSH signal « Observed » inputs for analysing errors
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* Signal and errors are «visually»
not separable in a single image

BUT

* Most error signals are range
dependent (of known geometry)

* Ocean topography is not range-
dependent

» Error cross-track signatures
should be statistically separable
from topography
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What is measured in a 1- day d“f'ference ?
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What is measuréd ina 1-day diffefence ? (cont.)

* One day difference measures the one-day variability plus twice the
sum of all errors (we assume complete error decorrelation)

s PSD of systematic errors signing on topography (swath average)
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Can we extract each spectrum from SWOT

images with the sum of SSH + all errors ?




THE CROSS SPECTRAL SIGNATURE
OF SWOT SIGNALS




Cross spectral density: example of roll
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Cross spectral density (XSD):
XSD,, =FFT(h).FFT(h,)’
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XSD cube: example ofroll
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 For all r,r;, insert the 1D

function XSD(k,) in a 3D cube

* Yields a « XSD cube » which is

a function of r;, r;and k,

* Here, roll has a specific 2D

signature in each (r; r;) slice
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2D slice of XSD cube : sighatureés are specific |

= XSDyyon = PSD,g); - 8onlruny)

XPSD roll @ kx
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METHODOLOGY




Step 1: build the XSD cube from the observations
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lllustration at different wavenumbers
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XSDyos = XSDy,on + XSD + XSD,,4 + XSD + XSD + XSD

Hnoise Hiso
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Each PSD is estimated at
the given wavenumber k,




RESULTS




Effectlve reconstructlon of individual spectra
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Effective reconstruction of i«ndivid',-’t]“al spectra (cont.)

Timing error budget 10 x timing error budget
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* The separation between timing and 6SSH relies on 6SSH isotropy assumption
*The timing range bias cannot be measured if it meets the requirement
- In the error budget, this term is 100 times smaller than 6SSH

- Its XSD signature is difficult to separate from 8SSH

* If the timing is larger than the requirements and become a threat for SSH,
then it would be measured

Using cross-spectra to disentangle ocean topography from errors,
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»Accurate estimation of the U-shaped noise
specifications
0003
* Noise is modulated by SWH and the science
requirements are defined for SWH=2m =>»
possible to do this analysis in SWH bins in order oo
to measure the SWH modulation of noise oo
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* The method works on small datasets (here 5 days only)
- The dominating PSDs are still accurate = it is possible to infer rapid
changes of these terms during the fast sampling phase
- Difficult to measure frequently PSDs with little energy (here baselme)
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Conclusions and outlook

Analysing the SWOT XSD cube works very well in simulations
* Measured PSD of roll, phase and baseline errors is very accurate (unique XSD signatures)
* White noise and its modulation by SWH and range is accurately measured
* DSSH spectrum is well estimated for wavelengths A > 15 km (limit is noise-related)
* Timing range bias is more difficult to measure
* If requirements are met, it is negligible w.r.t ocean topography
* If requirements are not met (unlikely), it can be measured up to A = 200 km

Why do we want to measure individual spectra?

* Cal/Val during the fast sampling phase (to demonstrate that requirements are met)
* For all product usages that require spectral error description (e.g. assimilation or Ol)
* XSD can be used on the 21-day orbit to detect changes in product accuracy

What if unexpected signatures are seen in flight data ?
* SWOT XSD cube contains a wealth of information, certainly more than we can simulate

today
* If unknown signatures are observed on the XSD cube, we can perform additional analyses
to mfer their origin (e.g. modulation by latitude, or H/V pol, or sea- state) |
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XSD cube of isotropic signals
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The Cross Spectral Density XSD bétween two series

Physical space (all integrated wavenumber) Fourier space
Variance Power Spectral Density (PSD)
Covariance Cross Spectral Density (XSD)
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* XSD is similar to a « covariance » at a given
wavenumber. Can be negative

* XSD between two identical series is the PSD

XSDy, 1 =
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